Title | Directed intermixing in multicomponent self-assembling biomaterials. |
Publication Type | Journal Article |
Year of Publication | 2011 |
Authors | JZ Gasiorowski, and JH Collier |
Journal | Biomacromolecules |
Volume | 12 |
Issue | 10 |
Start Page | 3549 |
Pagination | 3549 - 3558 |
Date Published | 10/2011 |
Abstract | The noncovalent coassembly of multiple different peptides can be a useful route for producing multifunctional biomaterials. However, to date, such materials have almost exclusively been investigated as homogeneous self-assemblies, having functional components uniformly distributed throughout their supramolecular structures. Here we illustrate control over the intermixing of multiple different self-assembling peptides, in turn providing a simple but powerful means for modulating these materials' mechanical and biological properties. In β-sheet fibrillizing hydrogels, significant increases in stiffening could be achieved using heterobifunctional cross-linkers by sequestering peptides bearing different reactive groups into distinct populations of fibrils, thus favoring interfibril cross-linking. Further, by specifying the intermixing of RGD-bearing peptides in 2-D and 3-D self-assemblies, the growth of HUVECs and NIH 3T3 cells could be significantly modulated. This approach may be immediately applicable toward a wide variety of self-assembling systems that form stable supramolecular structures. |
DOI | 10.1021/bm200763y |
Short Title | Biomacromolecules |